# The torsional rigidity of anisotropic prisms 

E. E. JONES<br>Department of Mathematics, University of Wales Institute of Science and Technology, Cardiff, Wales.

(Received May 13, 1974)

SUMMARY
Upper and lower bounds are obtained for the torsional rigidity of a prismatic cylinder of non-homogeneous anisotropic elastic material. Improvement in the bounds is obtained by expressing each bound as the quotient of two bordered determinants. Some analytical and numerical results are also presented.

## Introduction

The number of closed form solutions of the torsion problem for a non-homogeneous anisotropic medium is small. Some elementary solutions have been obtained by Chen [1], and by Brown and Jones [2] for curvilinearly aeolotropic material. The difficulties inherent in the problem have led to the search for methods which produce approximate solutions, and thus to estimates of the magnitude of the torsional rigidity of prismatic cylinders.

For material which is homogeneous and isotropic Prager [3] has evolved a method which provides upper and lower bounds to the torsional rigidity in terms of approximating functions derived from two basic energy extremum principles of elasticity theory. An alternative derivation has been given by Diaz [4], which also includes a method of improvement of the bounds.

For homogeneous orthotropic material Love [5] has shown that the torsional rigidity may be determined from that for an associated isotropic material by introducing a suitable coordinate transformation, and Lekhnitskii [6] has derived bounds for the torsional rigidity of cylinders of special cross-sections formed from orthotropic material. The method is also applicable to materials of more general anisotropy. Flavin [7] used the methods of [3, 5] to investigate further the bounds on the torsional rigidity of prisms of orthotropic material.

In this paper the prism is assumed to have a general cross-section, and is formed from nonhomogeneous elastic material with a plane of elastic symmetry at each point perpendicular to the axis of the prism. A boundary-value problem approach is used to produce bounds for the torsional rigidity in terms of approximating functions following the method of Diaz [4] for isotropic material. A feature of the study is that the bounds are expressed in closed form for any degree of approximation using the Rayleigh-Ritz technique, and these form lend themselves readily to numerical evaluation.

## 1. The torsional rigidity

Let the right section of the prism be parallel to the $x_{1}-x_{2}$ plane, with the axis of the prism along the $x_{3}$ direction. If the twist per unit length due to applied end couples is $\theta$ then the displacement has components

$$
u_{1}=-\theta x_{2} x_{3}, u_{2}=\theta x_{1} x_{3}, u_{3}=\theta \phi\left(x_{1}, x_{2}\right),
$$

where $\phi\left(x_{1}, x_{2}\right)$ is the warping function. The corresponding stress-strain relations for a nonhomogeneous material with a plane of elastic symmetry at each point normal to the axis of the prism are

$$
\begin{aligned}
& \sigma_{13}=\theta\left\{\alpha_{11}\left(\phi_{, 1}-x_{2}\right)+\alpha_{12}\left(\phi_{, 2}+x_{1}\right)\right\}, \\
& \sigma_{23}=\theta\left\{\alpha_{22}\left(\phi_{, 2}+x_{1}\right)+\alpha_{21}\left(\phi_{, 1}-x_{2}\right)\right\},
\end{aligned}
$$

or

$$
\begin{equation*}
\sigma_{i 3}=\theta \alpha_{i j} \lambda_{j} \quad(i, j=1,2), \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{i}=\phi_{, i}+e_{j i} x_{j} \tag{1.2}
\end{equation*}
$$

and

$$
e_{12}=1, e_{21}=-1, e_{11}=e_{22}=0 .
$$

Here and subsequently a repeated index implies summation over all the values of that index, and $\left({ }_{, i}\right)$ implies differentiation with respect to $x_{i}$. For a non-homogeneous material the $\alpha_{i j}$ are functions of $x_{1}$ and $x_{2}$, and as usual $\alpha_{12}=\alpha_{21}$.

The equilibrium equations in this case are

$$
\sigma_{i 3, i}=0,
$$

hence from (1.1) we have

$$
\begin{equation*}
\left(\alpha_{i j} \lambda_{j}\right)_{, i}=0 \tag{1.3}
\end{equation*}
$$

The force on the lateral surface of the prism is zero, hence if $n_{i}$ is the unit outward drawn normal along $C$, the perimeter of a right-section, then

$$
n_{i} \sigma_{i 3}=0,
$$

and thus from (1.1) the boundary condition on $C$ is

$$
\begin{equation*}
n_{i} \alpha_{i j} \lambda_{j}=0 \tag{1.4}
\end{equation*}
$$

The torsional rigidity $T$ of the prism is defined as the moment of the couple required to produce unit twist, and is given by

$$
T=\frac{1}{\theta} \int_{S}\left(\sigma_{23} x_{1}-\sigma_{13} x_{2}\right) \mathrm{d} S,
$$

where $S$ is the area of the right-section. This may be written in the form

$$
T=\frac{1}{\theta} \int_{S} e_{j i} \sigma_{i 3} x_{j} \mathrm{~d} S
$$

and from (1.1) and (1.2) we have

$$
\begin{equation*}
T=I-P, \tag{1.5}
\end{equation*}
$$

where

$$
P=-\int_{S} e_{j i} x_{i k} \phi_{, k} x_{j} \mathrm{~d} S,
$$

and

$$
\begin{align*}
I & =\int_{S} e_{j i} e_{m k} \alpha_{i k} x_{m} x_{j} \mathrm{~d} S \\
& =\int_{S}\left(\alpha_{11} x_{2}^{2}+\alpha_{22} x_{1}^{2}-2 \alpha_{12} x_{1} x_{2}\right) \mathrm{d} S \tag{1.6}
\end{align*}
$$

Now

$$
\begin{aligned}
\left(\alpha_{i j} \phi \lambda_{j}\right)_{, i} & =\alpha_{i j} \phi_{, i} \lambda_{j}+\phi\left(\alpha_{i j} \lambda_{j}\right)_{, i} \\
& =\alpha_{i j} \phi_{, i}\left(\phi_{, j}+e_{k j} x_{k}\right)
\end{aligned}
$$

by use of (1.2) and (1.3). Hence on rearrangement

$$
\left(\alpha_{i j} \phi \lambda_{j}\right)_{, i}=\alpha_{i j} \phi_{, i} \phi_{, j}+e_{j i} \alpha_{k i} \phi_{, k} x_{j},
$$

and thus $P$ reduces to

$$
P=\int_{S} \alpha_{i j} \phi_{, i} \phi_{, j} d S-\int_{S}\left(\phi \alpha_{i j} \lambda_{j}\right)_{, i} d S .
$$

By use of Gauss' theorem the second integral becomes

$$
\int_{C} \phi \alpha_{i j} \lambda_{j} n_{i} d s
$$

which is zero in value from (1.4), and then

$$
\begin{equation*}
P=\int_{S} \alpha_{i j} \phi_{, i} \phi_{, j} d S \tag{1.7}
\end{equation*}
$$

That $P$ is a positive definite quadratic form follows from the fact that the strain energy function

$$
\begin{align*}
W & =\frac{1}{2}\left(\alpha_{22} \varepsilon_{23}^{2}+2 \alpha_{12} \varepsilon_{23} \varepsilon_{13}+\alpha_{11} \varepsilon_{13}^{2}\right) \\
& =\frac{1}{2} \alpha_{i j} \varepsilon_{i 3} \varepsilon_{j 3}>0, \tag{1.8}
\end{align*}
$$

and a necessary and sufficient condition for this to be so is that

$$
\begin{equation*}
\alpha_{11}>0, \alpha_{22}>0, \alpha_{11} \alpha_{22}-\alpha_{12}^{2}>0 . \tag{1.9}
\end{equation*}
$$

It follows that $P>0$, and thus from (1.5) that

$$
\begin{equation*}
T<I, \tag{1.10}
\end{equation*}
$$

giving a rough upper bound for the torsional rigidity.

## 2. Upper bound for the torsional rigidity

In (1.7) we write $\phi=\chi+(\phi-\chi)$, where $\chi$ is as yet an arbitrary function of $x_{1}$ and $x_{2}$ in $S+C$. It follows that

$$
P \geqq \int_{S} \alpha_{i j} \chi_{, i} \chi,{ }_{, j} d S+2 \int_{S} \alpha_{i j} \chi_{, i}(\phi-\chi)_{, j} d S,
$$

since $\alpha_{i j}$ is symmetric and the components satisfy (1.9), or

$$
P \geqq 2 \int_{S} \alpha_{i j} \phi_{, j} \chi_{, i} d S-\int_{S} \alpha_{i j} \chi_{, i} \chi, j d S .
$$

But from (1.2) we have

$$
\int_{S} \alpha_{i j} \phi_{, j} \chi_{, i} d S=\int_{S} \alpha_{i j} \lambda_{i} \chi_{, j} d S-\int_{S} \alpha_{i j} \mathrm{e}_{k i} x_{k} \chi_{, j} d S
$$

The first integral on the right-hand side of this equation may be written as

$$
\int_{S}\left(\alpha_{i j} \lambda_{i} \chi\right)_{, j} d S-\int_{S} \chi\left(\alpha_{i j} \lambda_{i}\right)_{, j} d S
$$

and this complete expression is zero by use of Gauss' theorem together with (1.3) and (1.4). In all it follows that

$$
\begin{equation*}
T \leqq I+\int_{S} \alpha_{i j} \chi_{, i} \chi_{, j} d S-2 \int_{S} \alpha_{i j} e_{i k} x_{k} \chi_{, j} d S \tag{2.1}
\end{equation*}
$$

and by comparison with (1.8) the first integral on the right-hand side is positive definite.
In the application of Gauss' theorem it is sufficient that $\chi$ be continuous in $S$, and this is the only restriction on $\chi$ in $S$.

## 3. Lower bound for the torsional rigidity

Let $\mu_{i}$ be an arbitrary function of $x_{1}$ and $x_{2}$ in $S$, then writing as before

$$
\phi_{, i}=\mu_{i}+\left(\phi_{, i}-\mu_{i}\right),
$$

we have from (1.7)

$$
\begin{equation*}
P \geqq 2 \int_{S} \alpha_{i j} \phi_{, j} \mu_{i} d S-\int_{S} \alpha_{i j} \mu_{i} \mu_{j} d S . \tag{3.1}
\end{equation*}
$$

Consider next the integral

$$
\begin{aligned}
R & =\int_{S} \alpha_{i j} \phi_{, j}\left(\mu_{i}-\phi_{, i}\right) d S \\
& =\int_{S}\left\{\alpha_{i j} \phi\left(\mu_{i}-\phi_{, i}\right)\right\}_{, j} d S-\int_{S} \phi\left\{\alpha_{i j}\left(\mu_{i}-\phi_{, i}\right)\right\}_{, j} d S,
\end{aligned}
$$

and let

$$
\begin{equation*}
\alpha_{i j}\left(\mu_{i}-\phi_{, i}\right)_{, j}=0 \tag{3.2}
\end{equation*}
$$

in $S$. Then by Gauss' theorem

$$
R=\int_{c} \alpha_{i j} \phi\left(\mu_{i}-\phi_{, i}\right) n_{j} d s
$$

and it is noted that $\alpha_{i j} \mu_{i} n_{j}$ must be continuous in $S$.
Again assume that

$$
\begin{equation*}
\alpha_{i j}\left(\mu_{i}-\phi_{, i}\right) n_{j}=0 \tag{3.3}
\end{equation*}
$$

on $C$, then $R=0$, or

$$
\int_{S} \alpha_{i j} \phi_{, j} \mu_{i} d S=\int_{S} \alpha_{i j} \phi_{, j} \phi_{, i} d S=P
$$

It follows that (3.1) may be rewritten as
and thus

$$
P \leqq \int_{S} \alpha_{i j} \mu_{i} \mu_{j} d S,
$$

$$
\begin{equation*}
T \geqq I-\int_{S} \alpha_{i j} \mu_{i} \mu_{j} d S \tag{3.4}
\end{equation*}
$$

If we now introduce another function given by

$$
\rho_{i}=\mu_{i}+e_{j i} x_{j},
$$

then (3.2), together with (1.2) and (1.3), reduces to

$$
\begin{equation*}
\alpha_{i j} \rho_{i, j}=0 \tag{3.5}
\end{equation*}
$$

in $S$. It is noted that $\alpha_{i j} \rho_{i} n_{j}$ must be continuous in $S$.
Again (3.3), with the use of (1.4), reduces to

$$
\begin{equation*}
\alpha_{i j} \rho_{i} n_{j}=0 \tag{3.6}
\end{equation*}
$$

on $C$. In terms of $\rho_{i}$ the lower bound for the torsional rigidity (3.4) takes the form

$$
\begin{equation*}
T \geqq 2 \int_{S} \alpha_{i j} e_{k i} x_{k} \rho_{j} d S-\int_{S} \alpha_{i j} \rho_{i} \rho_{j} d S, \tag{3.7}
\end{equation*}
$$

and $\rho_{i}$ satisfies (3.5) and (3.6).
Choose a function $\psi$, which is such that

$$
\begin{equation*}
\alpha_{i j} \rho_{j}=e_{i j} \psi_{, j} \tag{3.8}
\end{equation*}
$$

then (3.5) is satisfied identically, since $e_{i j} \psi_{, i j}=0$. Again (3.6) becomes

$$
e_{i j} \psi_{, j} n_{i}=0
$$

on $C$. If $t_{i}$ is the unit vector tangential to $C$ then $t_{i}=e_{k i} n_{k}$, and thus $t_{j} \psi_{, j}=0$, or $d \psi / d s=0$
along $C$, implying that

$$
\begin{equation*}
\psi=\text { constant } \tag{3.9}
\end{equation*}
$$

on $C$. Also $e_{i j} \psi,{ }_{j} n_{i}$ must be continuous in $S$, i.e. $\psi$ must be continuous in $S$.
The lower bound (3.7) for $T$ may also be written in terms of $\psi$. Thus let $\beta_{i j}$ be such that

$$
\begin{equation*}
\beta_{j i} \alpha_{i k}=\delta_{j k}, \tag{3.10}
\end{equation*}
$$

so that from (3.8) we have

$$
\rho_{i}=\beta_{j i} e_{i k} \psi_{, k}
$$

In this case (3.10) may be solved for $\beta_{i j}$ leading to

$$
\beta_{11}=K \alpha_{22}, \quad \beta_{22}=K \alpha_{11}, \quad \beta_{12}=\beta_{21}=-K \alpha_{12},
$$

where $K=1 /\left(\alpha_{11} \alpha_{22}-\alpha_{12}^{2}\right)$, and then it readily follows that (3.7) reduces to

$$
\begin{equation*}
T \geqq-2 \int_{S} x_{1} \psi{ }_{, i} d S-K \int_{S} \alpha_{i j} \psi_{, i} \psi_{, j} d S \tag{3.11}
\end{equation*}
$$

which provides a lower bound to the torsional rigidity in terms of a function $\psi$, which is continuous in $S$ and constant on $C$. Again by comparison with (1.8) the second integral on the right-hand side is positive definite.

## 4. Determination and improvement of the bounds

### 4.1. Upper bound for the torsional rigidity

The upper bound for $T$ is given by (2.1) as $T \leqq U$, where $U$ is given by the right-hand side of (2.1), and here $\chi$ is continuous in $S$, but otherwise arbitrary.

Since $U$ is a scalar when $\chi$ is chosen to be scalar, then the upper bound to $T$ will be independent of the orientation of the coordinate axes. Following the standard Rayleigh-Ritz technique [8,9] we thus express $\chi$ in the form

$$
\chi=\omega+\omega_{r} f_{r}+\omega_{r s} f_{r s}+\omega_{r s t} f_{r s t}+\ldots,
$$

where $\omega_{r s \ldots}$ are arbitrary constant tensors, and the $f_{r s} \ldots$ are prescribed tensor functions of the coordinates. It is however more convenient to express $\chi$ in the form

$$
\begin{equation*}
\chi=\sum_{r=0}^{n} a_{r} g_{r}\left(x_{1}, x_{2}\right), \tag{4.1}
\end{equation*}
$$

where $a_{r}$ and $g_{r}$ are related to $\omega_{r s} \ldots$ and $f_{r s} \ldots$ respectively.
The expression (4.1) for $\chi$ may be substituted into $U$, the right-hand side of (2.1), and the resulting equation may be written as

$$
\begin{equation*}
U=I-2 \boldsymbol{a} \boldsymbol{Y}+\boldsymbol{a} \boldsymbol{X a}^{T} \tag{4.2}
\end{equation*}
$$

where $\boldsymbol{a}$ is a row vector of order $n$ with arbitrary constant elements $a_{r}, \boldsymbol{a}^{T}$ is its conjugate, $\boldsymbol{Y}$ is a column vector of order $n$ with elements

$$
\begin{equation*}
Y_{r}=\int_{S} \alpha_{i j} e_{i k} x_{k} g_{r, j} d S \tag{4.3}
\end{equation*}
$$

and $\boldsymbol{X}$ is a positive definite square matrix of order $n$ with elements

$$
\begin{equation*}
X_{r s}=\int_{S} \alpha_{i j} g_{r, i} g_{s, j} d S \tag{4.4}
\end{equation*}
$$

The minimum upper bound occurs when $\partial U / \partial a_{r}=0$, and thus from (4.2) we have

$$
\boldsymbol{Y}=\boldsymbol{X a}^{T} \quad \text { or } \quad \boldsymbol{a}=\boldsymbol{Y}^{T} \boldsymbol{X}^{-1} .
$$

In this case (4.2) reduces to

$$
\begin{equation*}
U=I-\boldsymbol{Y}^{T} \boldsymbol{X}^{-1} \boldsymbol{Y} \tag{4.5}
\end{equation*}
$$

Alternatively [10] we note that

$$
U=\left|\begin{array}{ll}
\boldsymbol{X} & \boldsymbol{Y}  \tag{4.6}\\
\boldsymbol{Y}^{T} & I
\end{array}\right| /|\boldsymbol{X}|
$$

and thus the least upper bound has been expressed as the ratio of two determinants, the numerator being a bordered form of that of the denominator. All the elements are known functions, and the form lends itself readily to computation. From (4.4) we have

$$
\begin{equation*}
X_{r s}=\int_{S}\left\{\alpha_{11} g_{r, 1} g_{s, 1}+\alpha_{12}\left(g_{r, 1} g_{s, 2}+g_{r, 2} g_{s, 1}\right)+\alpha_{22} g_{r, 2} g_{s, 2}\right\} d S \tag{4.7}
\end{equation*}
$$

and from (4.3)

$$
\begin{equation*}
Y_{r}=\int_{S}\left\{\alpha_{11} x_{2} g_{r, 1}+\alpha_{12}\left(x_{2} g_{r, 2}-x_{1} g_{r, 1}\right)-\alpha_{22} x_{1} g_{r, 2}\right\} d S, \tag{4.8}
\end{equation*}
$$

and $I$ is given by (1.6).

### 4.2. Lower bound for the torsional rigidity

The lower bound $L$ is defined by the right-hand side of (3.11), and $\psi$ is continuous in $S$, and is constant on $C$. In the same manner as for the upper bound a series of functions is chosen in the form

$$
\begin{equation*}
\psi=\sum_{r=0}^{n} b_{r} h_{r}\left(x_{1}, x_{2}\right), \tag{4.9}
\end{equation*}
$$

where the $b_{r}$ are arbitrary constants, and the $h_{r}$ are prescribed functions continuous in $S$, and chosen to make $\psi$ constant on $C$. This expression is substituted into $L$, the right-hand side of (3.11), leading to

$$
\begin{equation*}
L=-2 \boldsymbol{b} \boldsymbol{Z}-K \boldsymbol{b} \boldsymbol{W} \boldsymbol{b}^{T}, \tag{4.10}
\end{equation*}
$$

where $\boldsymbol{b}$ is a row vector of order $n$ with elements $b_{r}, \boldsymbol{Z}$ is a column vector of order $n$ with elements

$$
\begin{equation*}
Z_{r}=\int_{S} x_{i} h_{r, i} d S \tag{4.11}
\end{equation*}
$$

and $\boldsymbol{W}$ is a symmetric positive definite square matrix of order $n$ with elements

$$
\begin{equation*}
W_{r s}=\int_{S} \alpha_{i j} h_{r, i} h_{s, j} d S . \tag{4.12}
\end{equation*}
$$

The maximum lower bound is derived from $\partial L / \partial b_{r}=0$, and then from (4.10) we have

$$
\boldsymbol{Z}=-\boldsymbol{K} \boldsymbol{W} \boldsymbol{b}^{T} \text { or } \boldsymbol{b}=-K^{-1} \boldsymbol{Z}^{T} \boldsymbol{W}^{-1}
$$

In this case (4.10) reduces to

$$
L=K^{-1} Z^{T} \boldsymbol{W}^{-1} Z
$$

or alternatively

$$
L=-\left|\begin{array}{ll}
\boldsymbol{W} & \boldsymbol{Z}  \tag{4.13}\\
\boldsymbol{Z}^{T} & 0
\end{array}\right| / K|\boldsymbol{W}|
$$

This form is again the ratio of two determinants, one a bordered form of the other, the elements of which are known, since from (4.12) and (4.11) respectively
and

$$
\begin{equation*}
W_{r s}=\int_{S}\left\{\alpha_{11} h_{r, 1} h_{s, 1}+\alpha_{12}\left(h_{r, 1} h_{s, 2}+h_{r, 2} h_{s, 1}\right)+\alpha_{22} h_{r, 2} h_{s, 2}\right\} d S \tag{4.14}
\end{equation*}
$$

$$
\begin{equation*}
Z_{r}=\int_{S}\left(x_{1} h_{r, 1}+x_{2} h_{r, 2}\right) d S \tag{4.15}
\end{equation*}
$$

## 5. Analytical results

The bounds given by (4.6) and (4.13) are of the same type, both being the ratio of two determinants, the numerator being a bordered version of the denominator. Such ratios may be expanded as a Schweinsian expansion [11] for given $n$. For convenience consider the upper bound $U$ defined by (4.6). When $n$ functions $g_{r}$ are included in the series (4.1) then the corresponding value of $U$ can be referred to as $U_{n}$, and it follows from [11] that

$$
\begin{equation*}
U_{n}-U_{n-1}=-\left(\left|Y_{1} X_{12} X_{23} \ldots X_{n-1 n}\right|\right)^{2} / X_{n-1} X_{n} \tag{5.1}
\end{equation*}
$$

where the Gram determinant $X_{n} \equiv\left|X_{11} X_{22} \ldots X_{n n}\right|$. The determinants are referred to by the elements in their leading diagonals. It follows immediately that if the number of prescribed functions in the approximating series (4.1) is increased by one, then the change in the value of the determinantal ratio is given by (5.1). When the number of functions in (4.1) changes from $m$ to $n$ then by repeated application of formulae similar to (5.1) it is possible to obtain a result for $U_{n}-U_{m}$.

The quadratic form $\boldsymbol{a X a} \boldsymbol{a}^{T}$ is positive definite, and the condition for this to be so is that the Gram determinants $X_{r},(r=1,2, \ldots, n)$, are positive, hence the right-hand side of (5.1) is always negative, and thus an increase in the number of approximating functions in (4.1) will decrease the value of the upper bound, thus improving its value.

A repeated application of (5.1) and a summation produces the finite series expansion

$$
\begin{equation*}
U_{n}=I-\frac{Y_{1}^{2}}{X_{1}}-\sum_{r=2}^{n} \frac{\left(\left|Y_{1} X_{12} X_{23} \ldots X_{r-1 r}\right|\right)^{2}}{X_{r-1} X_{r}} \tag{5.2}
\end{equation*}
$$

It is thus possible to find an exact formula for the least upper bound, for a given $n$.
The corresponding result for $L_{n}$ derived from (4.13) is

$$
\begin{equation*}
L_{n}=K\left\{\frac{Z_{1}^{2}}{W_{1}}+\sum_{r=2}^{n} \frac{\left(\left|Z_{1} W_{12} W_{23} \ldots W_{r-1}\right|\right)^{2}}{W_{r-1} W_{r}}\right\} \tag{5.3}
\end{equation*}
$$

and since in (4.10) the quadratic form $\boldsymbol{b} \boldsymbol{W} \boldsymbol{b}^{T}$ is positive definite then $W_{r}>0,(r=1,2, \ldots, n)$. Again it is noted that the series has a finite number of terms and $K>0$. Hence in general an increase in $n$ produces an increase in $L_{n}$, and thus produces an improved value of the lower bound. Results related to (5.2) and (5.3) for a different problem are quoted by Levine and Schwinger [12] without proof.

Example 1. An upper bound for a homogeneous anisotropic elastic prism.
The approximating function $\chi$ is given by (4.1) with $n=5$, and

$$
g_{1}=x_{1}, g_{2}=x_{2}, g_{3}=x_{1} x_{2}, g_{4}=\frac{1}{2} x_{2}^{2}, g_{5}=\frac{1}{2} x_{1}^{2}
$$

The corresponding functions $X_{r s}, Y_{r},(r=1,2, \ldots, 5)$, from (4.7) and (4.8) are readily determined in terms of the integrals

$$
I_{r s}=\int_{S} x_{1}^{r} x_{2}^{s} d S
$$

it being remembered that for homogeneous material $\alpha_{i j},(i, j=1,2)$, are constants. Row or column reduction of the determinants in (4.6) leads ultimately to the result

$$
\begin{equation*}
U=\frac{4\left(\alpha_{11} \alpha_{22}-\alpha_{12}^{2}\right)\left(\bar{I}_{02} \bar{I}_{20}-\bar{I}_{11}^{2}\right)}{\alpha_{11} \bar{I}_{02}+\alpha_{22} \bar{I}_{20}-2 \alpha_{12} \bar{I}_{11}}, \tag{5.4}
\end{equation*}
$$

where

$$
\bar{I}_{r s}=\int_{S}\left(x_{1}-\bar{x}_{1}\right)^{r}\left(x_{2}-\bar{x}_{2}\right)^{s} d S .
$$

Here $\bar{x}_{1}, \bar{x}_{2}$ are the coordinates of the centre of area of the cross-section $S, \bar{I}_{02}$ and $\check{I}_{20}$ are the second moments of $S$ about lines through the centre of area parallel to the $x_{1}$ and $x_{2}$ axes respectively, and $\bar{I}_{11}$ is the corresponding product moment.

The expression for $U$ has the property that it is invariant under a rotation of the axial system. It is also noticed that it is an extension of the result given by Flavin [7, p. 702] for the orthotropic cylinder.

## Example 2. An upper bound for a non-homogeneous anisotropic elastic prism.

It is known that a rough upper bound $U$ for the torsional rigidity $T$ is $I$, as shown in (1.10), where $I$ is defined in (1.6), and the elastic parameters $\alpha_{i j}$ are functions of position. An improvement of the bound may be obtained by taking $n=2$ in (4.1) with $g_{1}=x_{1}, g_{2}=x_{2}$. In this case (5.2) becomes

$$
\begin{equation*}
U=I-\frac{X_{22} Y_{1}^{2}+X_{11} Y_{2}^{2}-2 X_{12} Y_{1} Y_{2}}{X_{11} X_{22}-X_{12}^{2}}, \tag{5.5}
\end{equation*}
$$

where

$$
X_{r s}=\int_{s} \alpha_{r s} d S, \quad(r, s=1,2)
$$

and

$$
Y_{r}=\int_{S}\left(\alpha_{r 1} x_{2}-\alpha_{r 2} x_{1}\right) d S, \quad(r=1,2) .
$$

This result (5.5) obtained by the inclusion of linear terms in $x_{1}$ and $x_{2}$ in the approximating function is precisely the smallest value of $I$, as defined in (1.6), obtained by a change in position of the origin of coordinates.

Example 3. An upper bound for a non-homogeneous anisotropic elastic prism of symmetrical section.

Here $\alpha_{i j}$ is a function of position, and the material non-homogeneity is such that it is symmetrical about the $x_{1}$ axis, coincident with the axis of symmetry of the prism section, i.e. $\alpha_{i j}\left(x_{1}, x_{2}\right)=\alpha_{i j}\left(x_{1},-x_{2}\right)$. It is found convenient to introduce the integrals

$$
I_{r s}^{i j}=\int_{S} \alpha_{i j}\left(x_{1}, x_{2}\right) x_{1}^{r} x_{2}^{s} d S
$$

so that $I_{r s}^{i j}=0$ when $s$ is an odd integer.
An approaching function $\chi$ in this case is chosen involving the functions

$$
g_{1}=x_{1} x_{2}, g_{2}=\frac{1}{2} x_{1}^{2}, g_{3}=\frac{1}{2} x_{2}^{2} .
$$

Use of (4.6) leads to the upper bound of the form

$$
\begin{equation*}
U=4 A B /(A+B) \tag{5.6}
\end{equation*}
$$

where

$$
\begin{aligned}
& A=I_{02}^{11}-\left(I_{02}^{12}\right)^{2} / I_{02}^{22}, \\
& B=I_{20}^{22}-\left(I_{20}^{12}\right)^{2} / I_{20}^{11} .
\end{aligned}
$$

It is noted that (5.6) has the same form as that given by Nicolai [13] for the isotropic prism.

Example 4. Bounds for the homogeneous anisotropic $N$-fold symmetric elastic prism.
It is known that the functions $g_{r}\left(x_{1}, x_{2}\right)$ of $(4.1)$ are continuous in $S$. The prism with $N$-fold symmetry has $N$ identical sections, and thus we choose the $g_{r}\left(x_{1}, x_{2}\right)$ to be identical in each section and continuous across the internal boundaries separating each section. In this context each section can be considered as a typical section $S_{0}$ rotated through an integral multiple of $2 \pi / N$, and the upper bound formula (4.6) reduces to

$$
U=N\left(\alpha_{11}+\alpha_{22}\right)\left|\begin{array}{ll}
\boldsymbol{A} & \boldsymbol{B}  \tag{5.7}\\
\boldsymbol{B}^{T} & J
\end{array}\right| / 2|\boldsymbol{A}|
$$

where $\boldsymbol{A}$ and $\boldsymbol{B}$ are matrices with elements

$$
\begin{aligned}
A_{r s} & =\int_{S_{0}}\left(g_{r, 1} g_{s, 1}+g_{r, 2} g_{s, 2}\right) d S_{0} \\
B_{r} & =\int_{S_{0}}\left(x_{2} g_{r, 1}-x_{1} g_{r, 2}\right) d S_{0}
\end{aligned}
$$

respectively, and

$$
J=\int_{S_{0}}\left(x_{1}^{2}+x_{2}^{2}\right) d S_{0}
$$

The lower bound is determined from (4.13) assuming that $\psi$ can be developed as in (4.9) in each of the $N$ parts of $S$, and $h_{r}\left(x_{1}, x_{2}\right)$ must be continuous across internal boundaries to each section of $S$. This bound reduces to

$$
L=-2 N\left(\alpha_{11} \alpha_{22}-\alpha_{12}^{2}\right)\left|\begin{array}{ll}
\boldsymbol{C} & \boldsymbol{D}  \tag{5.8}\\
\boldsymbol{D}^{T} & 0
\end{array}\right| /\left(\alpha_{11}+\alpha_{22}\right)|\boldsymbol{C}|,
$$

where $\boldsymbol{C}$ and $\boldsymbol{D}$ are matrices with elements

$$
\begin{aligned}
C_{r s} & =\int_{S_{0}}\left(h_{r, 1} h_{s, 1}+h_{r, 2} h_{s, 2}\right) d S_{0} \\
D_{r} & =\int_{S_{0}}\left(x_{1} h_{r, 1}+x_{2} h_{r, 2}\right) d S_{0}
\end{aligned}
$$

respectively.
If $U_{I}$ and $L_{I}$ are the bounds for the corresponding isotropic prism of rigidity modulus $\mu$, then

$$
\begin{equation*}
U=\frac{\left(\alpha_{11}+\alpha_{22}\right) U_{I}}{2 \mu}, \quad L=\frac{2\left(\alpha_{11} \alpha_{22}-\alpha_{12}^{2}\right) L_{I}}{\mu\left(\alpha_{11}+\alpha_{22}\right)} . \tag{5.9}
\end{equation*}
$$

A knowledge of the bounds on the torsional rigidity for the isotropic prism thus leads to values of the bounds for an anisotropic prism.

Further, if the exact value $T_{I}$ of the torsional rigidity for the isotropic prism is known, then bounds for the anisotropic prism can be found using $U$ and $L$ as in (5.9), with $U_{I}$ and $L_{I}$ replaced by $T_{I}$. This is a generalization of a result due to Flavin [7, pp. 700, 701]. The coefficients of $U_{I}$ and $L_{I}$ in (5.9) are scalars, and thus the bounds are independent of the orientation of the axes.

The regular hexagon section. For a prism of isotropic material of rigidity modulus $\mu$, with a cross-section in the form of a regular hexagon of side $a$ the torsional rigidity $T_{I}$ has the (rounded-off) value $1.035459 \mu a^{4}$. This result has been obtained by the application of a formula due to Seth [14]. It differs from the value given by Polya and Szego [15, p. 258], although it is consistent with results derived in Section 6 of this paper. If we write $P=\alpha_{11} / \alpha_{22}, Q=\alpha_{12} / \alpha_{22}$, $L^{\prime}=L / \alpha_{22} a^{4}, U^{\prime}=U / \alpha_{22} a^{4}$, then application of (5.9) with $U_{I}$ and $L_{I}$ replaced by $T_{I}$ leads to the results as given in Table 1.

The upper bound suffers from the defect that it does not reflect any change in $\alpha_{12}$. It should also be noted that these bounds can only lead to rough estimates of the values of the torsional rigidities, since the bounds differ by about $12 \%, 3 \%$ and $7 \%$ respectively from their mean values.

TABLE 1
Regular hexagon section

| $P$ | $Q$ | $L^{\prime}$ | $U^{\prime}$ |
| :--- | :--- | :--- | :--- |
| 0.50 | 0.25 | 0.604018 | 0.776594 |
| 1.00 | 0.25 | 0.970743 | 1.035459 |
| 2.00 | 0.25 | 1.337468 | 1.553188 |

## 6. Numerical results

The prism is assumed to be elastically homogeneous and anisotropic, so that $\alpha_{i j},(i, j=1,2)$, are constants. The method applies equally to non-homogeneous prisms. It is assumed that the function $\chi$ of (4.1) is developed as a sum of polynomials of degrees ranging from zero to a selected integral value $n$, with arbitrary constant coefficients $a_{r}$. It is thus possible to write

$$
\begin{equation*}
\chi=\sum_{p=0}^{n} \sum_{q=0}^{p} a_{r} x_{1}^{p-q} x_{2}^{q}, \tag{6.1}
\end{equation*}
$$

where $r=\frac{1}{2} p(p+1)+q$, and for a given integer $n$ the total number of terms in $\chi$ is $m=\frac{1}{2}(n+1)(n+2)$.

In the case of $\psi$, given by (4.9), it is necessary to write

$$
\begin{equation*}
\psi=f\left(x_{1}, x_{2}\right) \sum_{p=0}^{n} \sum_{q=0}^{p} b_{r} x_{1}^{p-q} x_{2}^{q}, \tag{6.2}
\end{equation*}
$$

where $f\left(x_{1}, x_{2}\right)$ is a polynomial which is zero on $C$ the contour of the prism cross-section.
The matrix elements $X_{r s}, Y_{r}$ of (4.7), (4.8) respectively involve integrals of the type

$$
\int_{S} x_{1}^{\alpha} x_{2}^{\beta} d x_{1} d x_{2}
$$

where $\alpha, \beta$ are integers. These integrals may be evaluated directly for an area $S$ with contour $C$, or by an iterative method. Due note should be made of any geometrical symmetries in the crosssection, so that some of the integrals may be zero in value, and thus some of the matrix elements may have zero values, or equivalently some of the terms in $\chi$ or $\psi$ may be omitted.

If $\chi$ contains $m$ terms then the determinant in the numerator of $U$ of (4.6) is of order $m+1$, the leading minor of order $m$ being identical with the determinant in the denominator of (4.6). In practice the positive definiteness of both determinants allows Gaussian elimination to proceed without pivoting, so that both determinants can be reduced to upper triangular form simultaneously. The ratio of the original determinants will then have a value equal to that of the $(m+1)$ th element in the leading diagonal of the upper triangular determinant in the final form of the numerator. The error produced in this element due to the elimination process is given by Kabaza [16] as less than 2.01 mae, where $a$ is the value of the largest element in the original numerator determinant, and $e$ is the least significant digit in the word of the binary digital computer in use ( $e=10^{-16}$ in this computation). The computer program was arranged so as to obtain the values of the ratio of the determinants at intermediate values of the range $(0, m)$ during the same elimination process. In order to counteract the effect of possible instability due to the choice of approximating function the numerical analysis was repeated using double-length arithmetic, and a further check of the accuracy was made by using the method of reliable bounds following Synge [17]. To the number of decimal places given in the following numerical results the values were the same. The method may be applied equally well to the evaluation of $L$ from (4.13).

Let $P=\alpha_{11} / \alpha_{22}, Q=\alpha_{12} / \alpha_{22}$, and $U^{\prime}=U / \alpha_{22} a^{4}, L^{\prime}=L / \alpha_{22} a^{4}$, where $a$ is a standard length associater with the cross-section of the prism.

### 6.1. Kite section

In Fig. 1 the line $B D$ is orthogonal to $A C$, and $A O=O C=a / 2, B E=E D, M=B D / A C$, $R=2 O E / A C$. Table 2 gives the values for the bounds $L^{\prime}$ and $U^{\prime}$ for varying values of $P$ and $M$, with $n=10$ in (6.1), (6.2) respectively, and $Q=0.25, R=0.5$.

For isotropic material with $P=1, Q=0$ the results for the square section, i.e. $M=1, R=0$ are

$$
L^{\prime}=0.03514415, \quad U^{\prime}=0.03514487
$$

the exact (rounded-off) value being 0.03514428.
For the rhombus section with $M=3^{-\frac{1}{2}}, R=0$ we have

$$
L^{\prime}=0.01043670, \quad U^{\prime}=0.01043967
$$



Figure 1. Kite section.

TABLE 2
Kite section

| $P$ | $M$ | $L^{\prime}$ | $U^{\prime}$ |
| :--- | :--- | :--- | :--- |
| 0.5 | 1.5 | 0.00358042 | 0.00358378 |
| 0.5 | 1.0 | 0.01984654 | 0.01985016 |
| 0.5 | 0.5 | 0.04690588 | 0.04692572 |
| 2.0 | 1.5 | 0.01094203 | 0.01094369 |
| 2.0 | 1.0 | 0.04415723 | 0.04418884 |
| 2.0 | 0.5 | 0.08538937 | 0.08549254 |

TABLE 3
Isosceles triangle section

| $\bar{P}$ | $M$ | $L^{\prime}$ | $U^{\prime}$ |
| :--- | :--- | :--- | :--- |
| $\overline{0.5}$ | 0.5 | 0.00302660 | 0.00302674 |
| 0.5 | 1.0 | 0.01683210 | 0.01683218 |
| 0.5 | 1.5 | 0.04095216 | 0.04095219 |
| 2.0 | 0.5 | 0.00920390 | 0.00920392 |
| 2.0 | 1.0 | 0.03923355 | 0.03923356 |
| 2.0 | 1.5 | 0.07905765 | 0.07905821 |

TABLE 4
Right-angled triangle section

| $P$ | $M$ | $L^{\prime}$ | $U^{\prime}$ |
| :--- | :--- | :--- | :--- |
| 0.5 | 0.5 | 0.00271111 | 0.00271167 |
| 0.5 | 1.0 | 0.01397942 | 0.01398037 |
| 2.0 | 0.5 | 0.00812412 | 0.00812431 |
| 2.0 | 1.0 | 0.03249649 | 0.03249724 |

TABLE 5
Regular hexagon section

| $P$ | $Q$ | $L^{\prime}$ | $U^{\prime}$ |
| :--- | :--- | :--- | :--- |
| 0.5 | 0.25 | 0.60679483 | 0.60693118 |
| 2.0 | 0.25 | 1.34133400 | 1.34157706 |

### 6.2. Isosceles triangle section

For an isosceles triangle section $A B C$ of base $A B=M a$, and height $a$, the bounds for $n=10$, $Q=0.25$ are recorded in Table 3 for varying $P$ and $M$.

For an equilateral triangle section of a prism of isotropic material both bounds have the same value 0.03849002 , the exact (rounded-off) value, as is to be expected with a polynomial approximating function.

### 6.3. Right-angled triangle section

The triangle $A B C$ has a right angle at $B$, and $A B=a, B C=M a$. For $Q=0.25$ and $n=10$ the bounds for the torsional rigidity are given by Table 4.

For a prism of isotropic material of $30^{\circ}-60^{\circ}-90^{\circ}$ triangle section, i.e. $P=1, Q=0, M=3^{-\frac{1}{2}}$, the bounds are

$$
L^{\prime}=0.00791405, \quad U^{\prime}=0.00791411
$$

and these may be compared with the exact (rounded-off) value 0.0079141 as given by Hay [18].

### 6.4. Regular hexagon section

For a hexagonal section of side $a$ the lower and upper bounds to the torsional rigidity are given in Table 5. Symmetry properties of the matrices $X$ and $\boldsymbol{Z}$ in (4.6) and (4.13) respectively have allowed the values of $n=16$ to be taken for $L^{\prime}$ and $U^{\prime}$ without use of excessive store space during the computation.

The results for the case of isotropic material where $P=1, Q=0$, are

$$
L^{\prime}=1.03541891, \quad U^{\prime}=1.03554020
$$

and this should be compared with the exact (rounded-off) result obtained by the method of Seth [14], i.e. 1.035459, as referred to in Section 5. The bounds in Table 5 are an improvement on the corresponding results of Table 1.

## REFERENCES

[1] Yu Chen, Torsion of non-homogeneous bars, J. Frank. Inst., 277 (1964) 50-54.
[2] R. K. Brown and E. E. Jones, On the torsion of a curvilinearly aeolotropic cylinder, Quart. App. Math., 26 (1968) 273-275.
[3] W. Prager, Introduction to mechanics of continua, Ginn and Company, Boston (1961).
[4] J. B. Diaz, On the estimation of torsional rigidity and other physical constants, Proc. First Nat. Congress App. Mechs., (1951) 259-263.
[5] A. E. H. Love, The mathematical theory of elasticity, Dover Publications, New York (1944).
[6] S. G. Lekhnitskii, Theory of elasticity of an anisotropic elastic body (translated by P. Fern), Holden-Day, San Fransisco (1963).
[7] J. N. Flavin, Bounds for the torsional rigidity of orthotropic cylinders, ZAMP, 18 (1967) 694-704.
[8] R. Dourant, Variational methods for the solution of problems of equilibrium and vibrations, Bull. Am. Math. Soc., 49 (1943) 1-23.
[9] T. J. Higgins, The approximate mathematical methods of applied physics as exemplified by application to SaintVenant's torsion problem, J. App. Phys., 14 (1943) 469-480.
[10] W. L. Ferrar, Algebra, Oxford University Press, (1941).
[11] A. C. Aitken, Determinants and matrices, Oliver and Boyd, Edinburgh (1964).
[12] H. Levine and J. Schwinger, On the theory of electromagnetic wave diffraction by an aperture in an infinite plane conducting screen, The theory of electromagnetic waves, Ed. M. Kline, Dover Publications, New York (1951).
[13] E. Nicolai, Über die Drillungssteifigkeit zylindrischer Stabe, ZAMM 4 (1923) 181-182.
[14] B. R. Seth, Torsion of beams whose cross-section is a regular polygon of $n$ sides, Proc. Camb. Phil. Soc., 30 (1934) 139-149.
[15] G. Polya and G. Szego, Isoperimetric inequalities in mathematical physics, Princeton University Press (1951).
[16] I. M. Kabaza, Matrix computations, Lecture notes, Queen Mary College, University of London, (1963).
[17] J. L. Synge, The hypercircle in mathematical physics, Cambridge University Press, (1957).
[18] G. E. Hay, The method of images applied to the problem of torsion, Proc. London Math. Soc., 45 (1939) 382-397.

