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SUMMARY 
Upper and lower bounds are obtained for the torsional rigidity of a prismatic cylinder of non-homogeneous anisotropic 
elastic material. Improvement in the bounds is obtained by expressing each bound as the quotient of two bordered 
determinants. Some analytical and numerical results are also presented. 

Introduction 

The number of closed form solutions of the torsion problem for a non-homogeneous anisotropic 
medium is small. Some elementary solutions have been obtained by Chen [1], and by Brown 
and Jones [2] for curvilinearly aeolotropic material. The difficulties inherent in the problem 
have led to the search for methods which produce approximate solutions, and thus to estimates 
of the magnitude of the torsional rigidity of prismatic cylinders. 

For material which is homogeneous and isotropic Prager [3] has evolved a method which 
provides upper and lower bounds to the torsional rigidity in terms of approximating functions 
derived from two basic energy extremum principles of elasticity theory. An alternative deriva- 
tion has been given by Diaz [4], which also includes a method of improvement of the bounds. 

For homogeneous orthotropic material Love [5] has shown that the torsional rigidity may 
be determined from that for an associated isotropic material by introducing a suitable coordi- 
nate transformation, and Lekhnitskii [6] has derived bounds for the torsional rigidity of 
cylinders of special cross-sections formed from orthotropic material. The method is also 
applicable to materials of more general anisotropy. Flavin [7] used the methods of [3, 5] to 
investigate further the bounds on the torsional rigidity of prisms of orthotropic material. 

In this paper the prism is assumed to have a general cross-section, and is formed from non- 
homogeneous elastic material with a plane of elastic symmetry at each point perpendicular to 
the axis of the prism. A boundary-value problem approach is used to produce bounds for the 
torsional rigidity in terms of approximating functions following the method of Diaz [4] for 
isotropic material. A feature of the study is that the bounds are expressed in closed form for 
any degree of approximation using the Rayleigh-Ritz technique, and these form lend them- 
selves readily to numerical evaluation. 

1. The torsional rigidity 

Let the right section of the prism be parallel to the Xl -X  2 plane, with the axis of the prism 
along the x 3 direction. If the twist per unit length due to applied end couples is 0 then the 
displacement has components 

ul = -Ox2x3 ,  u2= OXlX3, u3= O0(Xl, X2), 

where ~b (x 1, x2) is the warping function. The corresponding stress-strain relations for a non- 
homogeneous material with a plane of elastic symmetry at each point normal to the axis of 
the prism are 

0-13 = 0{~11 ((/),l--X2)-]-O~12(~)2-]-X1)}, 
0-23 = 0 {~22 (+,2 +x~)+ ~1 (+,1 -x2)}, 

Journal of Engineering Math., Vol. 9 (1975) 39-51 



40 E. E. Jones  

o r  

ai3 = O~ij2j ( i , j =  1,2), (1.1) 
where 

2 i = r  (1.2) 
and 

e12 = 1 , e21 = - 1  , e l l  = 822 = 0 .  

Here and subsequently a repeated index implies summation over all the values of that index, 
and (,i) implies differentiation with respect to xv For a non-homogeneous material the ~j  are 
functions of xl and x2, and as usual 0~12=0~21 . 

The equilibrium equations in this case are 

(Ti3,i ~ 0 

hence from (1.1) we have 

(~,j,~j)., = 0 .  (1.3) 

The force on the lateral surface of the prism is zero, hence if n~ is the unit outward drawn 
normal along C, the perimeter of a right-section, then 

niffi3 = 0 , 

and thus from (1.1) the boundary condition on C is 

nio~ij2 j = O. (1.4) 

The torsional rigidity T of the prism is defined as the moment of the couple required to 
produce unit twist, and is given by 

where S is the 

T = ~ I  s e j i a i 3 x j d S ,  

and from (1.1) and (1.2) we have 

T = I - P ,  

where / ,  

P = -- I~ eJiO~ikO,kxjdS'  Ja 

and 

Now 

(0"23 X 1 - -  0"13 x 2 ) d S  , 

area of the right-section. This may be written in the form 

I = ejiemkO~ikXmXjdS 

= i s  (Oq1x2 +~ 2~  X2) dS  " 

= cqjc~, i ((a ,j + ekgXk) 

by use of (1.2) and (1.3). Hence on rearrangement 

(~ij'~,~j) ,~ = ~ij ~ ,~ q~, ~ + e~ ~kl q~ ,k x~ ,  

and thus P reduces to 

(1.5) 

(1.6) 
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P= is ~UC~,i~b,~dS - fs ((9~q2j),~ dS. 

By use of Gauss' theorem the second integral becomes 

j; c~ct~j2~n~ds, 

which is zero in value from (1.4), and then 

= .ix %4~,4~jdS. P (1.7) 

That P is a positive definite quadratic form follows from the fact that the strain energy 
function 

W 1 2 

= 1Cti jgi3~,j3 > 0 ,  (1.8) 

and a necessary and sufficient condition for this to be so is that 

O~ll ]>0 ,  0~22 > 0 ,  0~110~22--0~22 > 0 .  (1.9) 

It follows that P >0,  and thus from (1.5) that 

T <  I ,  (1.10) 

giving a rough upper bound for the torsional rigidity. 

2. Upper bound for the torsional rigidity 

In (1.7) we write q~=z+(qS-z) ,  where Z is as yet an arbitrary function ofx~ and x 2 in S+C. 
It follows that 

P >= ~s  "Jz"z'jdS+2fs ~ 

since ~ij is symmetric and the components satisfy (1.9), or 

P> 2 fs o:~jffg,jz,idS - fs ~jZ,~z,~dS. 

But from (1.2) we have 

The first integral on the right-hand side of this equation may be written as 

fs (~q2,Z),~dS- fs Z(c~2')'~dS' 

and this complete expression is zero by use of Gauss' theorem together with (1.3) and (1.4). 
In all it follows that 

T<=l+fs%Z,,z,~dS-2~s%e,~xkz,jdS, (2.1) 

and by comparison with (1.8) the first integral on the right-hand side is positive definite. 
In the application of Gauss' theorem it is sufficient that Z be continuous in S, and this is the 

only restriction on Z in S. 
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3. Lower bound for the torsional rigidity 

Let #i be an arbitrary function of Xl and x2 in S, then writing as before 

4~' ,= #,+(~,,-#,), 
we have from (1.7) 

P >= 21s aiJ(~,J#idS- fs ~ij#i#j dS. 

Consider next the integral 

R = t~ o~ij@,j(#i--(/) i)dS 

and let 

~j(U~-~,b i), j  = 0 

in S. Then by Gauss' theorem 

= ( ~,j4~(#,-~.,),#s, R 
3 c 

and it is noted that 7~j#~nj must be continuous in S. 
Again assume that 

~,j ( # , -  ~ ,  ,) n~ = 0 

on C, then R = 0, or 

j; ~,j~.,#,dS=f~. c~oqb,j~.idS=P. 

It follows that (3.1) may be rewritten as 

P < Ii  o~ij #i #j dS 
.}3 

and thus 
{ *  

T => I - ts  o~ij #i llj dS 

If we now introduce another function given by 

Pi ~- # i ~ - e j i x j  , 

then (3.2), together with (1.2) and (1.3), reduces to 

~ i j P i , j  : 0 

in S. It is noted that ~jpinj must be continuous in S. 
Again (3.3), with the use of (1.4), reduces to 

a~jp~nj = 0 
on C. In terms of Pi the lower bound for the torsional rigidity (3.4) takes the form 

T > 2 fs aiJek*xkpflS-- fs ~ 

and Pi satisfies (3.5) and (3.6). 
Choose a function ~b, which is such that 

E. E. Jones 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

Journal ofEnqineerin# Math., Vol. 9 (1975) 39-51 



The torsional rigidity of  anisotropic prisms 

cqsps = eijO,s, 

then (3.5) is satisfied identically, since els0, is = 0. Again (3.6) becomes 

eis~b sn i = 0 

on C. If tl is the unit vector tangential to C then tl = ekl nk, and thus ts ~, j = 0, or dO/ds = 0 
along C, implying that 

~b = constant (3.9) 

on C. Also eisO,jn~ must be continuous in S, i.e. ~b must be continuous in S. 
The lower bound (3.7) for T may also be written in terms of ~. Thus let fl~s be such that 

[lSi~ik = fig, (3.10) 

so that from (3.8) we have 

Pi = fljieik~l,k �9 

In this case (3.10) may be solved for ills leading to 

311 = Kc~22, 322= K~11, 1312=/~21 = - K ~ 1 2 ,  

where K =  1/(~11322-~22), and then it readily follows that (3.7)reduces to 

T >= - 2 fs xl  O , l d S -  K fs aisO,iO,sdS , (3.11) 

which provides a lower bound to the torsional rigidity in terms of a function ~, which is con- 
tinuous in S and constant on C. Again by comparison with (1.8) the second integral on the 
right-hand side is positive definite. 

4. Determination and improvement of the bounds 

4.1. Upper bound for the torsional rigidity 

The upper bound for T is given by (2.1) as T <  U, where U is given by the right-hand side of 
(2.1), and here )( is continuous in S, but otherwise arbitrary. 

Since U is a scalar when )( is chosen to be scalar, then the upper bound to T will be independent 
of the orientation of the coordinate axes. Following the standard Rayleigh-Ritz technique 
[8, 9] we thus express X in the form 

X = co + (orf~ + o)rsf,~ + c%tfr~, + . . . .  

where ~o ..... are arbitrary constant tensors, and the fr . . . .  are prescribed tensor functions of the 
coordinates. It is however more convenient to express Z in the form 

Z = ~, argr(xl, x2), (4.1) 
r = 0  

where ar and Or are related to co ..... and f~ . . . .  respectively. 
The expression (4.1) for )( may be sulSstituted into U, the right-hand side of (2.1), and the 

resulting equation may be written as 

U = I -  2 a Y +  aXa r , (4.2) 

where a is a row vector of order n with arbitrary constant elements at, a T is its conjugate, 
Y is a column vector of order n with elements 

Yr = fs  aijeikxkgr'jdS' (4.3) 
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44 E. E. Jones 

and X is a positive definite square matrix of order n with elements 

Xr~ = Js ~ ~ g~' j dS. (4.4) 

The minimum upper bound occurs when OU/Qar=O, and thus from (4.2) we have 

Y = Xa T or a =  YT X - 1 .  

In this case (4.2) reduces to 

U = I -  YTX-1  Y .  (4.5) 

Alternatively [10] we note that 

U = XI ,  (4.6) 

and thus the least upper bound has been expressed as the ratio of two determinants, the 
numerator being a bordered form of that of the denominator. All the elements are known 
functions, and the form lends itself readily to computation. From (4.4) we have 

Xrs = Jl {~ +~ +gr'zgs'l)-i-Otzzgr'zgs'2}dS' (4.7) 

and from (4.3) 

Y~ = Js {cq lx2gr ' l+~12(x2g~ 'e -x lgr ' l ) -~zex lg~ ' z}dS '  (4.8) 

and I is given by (1.6). 

4.2. Lower bound .for the torsional rigidity 

The lower bound L is defined by the right-hand side of (3.11), and ~ is continuous in S, and is 
constant on C. In the same manner as for the upper bound a series of functions is chosen in the 
form 

= ~ brhr(xl, x2), (4.9) 
r = O  

where the b~ are arbitrary constants, and the h~ are prescribed functions continuous in S, and 
chosen to make r constant on C. This expression is substituted into L, the right-hand side of 
(3.11), leading to 

L = - 2 b Z -  KbWb T , (4.10) 

where b is a row vector of order n with elements b~, Z is a column vector of order n with elements 

Z , =  fsXlh~,idS, (4.11) 

and W is a symmetric positive definite square matrix of order n with elements 

.ii~ cqjhr,~h~,jdS. (4.12) 

The maximum lower bound is derived from OL/#b,=O, and then from (4.10) we have 

Z =  - K W h  ~ or b =  - K - 1 Z  ~ W - 1 .  

In this case (4.10) reduces to 

L =  K - 1 Z T W - 1 Z ,  
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or alternatively 

L =  - Z W Z / K I W I .  (4.13) 

This form is again the ratio of two determinants, one a bordered form of the other, the elements 
of which are known, since from (4.12) and (4.11) respectively 

Wrs = (_ {o;11hr, l hs, 1+o~12(hr, lhs,2+hr,2hs,1)W~zzhr, 2hs, z } d S ,  (4.14) 
Js 

and 

Z, = fs (Xlh~'l +x2h~'2)dS" (4.15) 

5. Analytical results 

The bounds given by (4.6) and (4.13) are of the same type, both being the ratio of two deter- 
minants, the numerator being a bordered version of the denominator. Such ratios may be 
expanded as a Schweinsian expansion [11] for given n. For convenience consider the upper 
bound U defined by (4.6). When n functions gr are included in the series (4.1) then the correspond- 
ing value of U can be referred to as U,, and it follows from [11] that 

u . -  u . _ l  = - ( I  Y1 x 1 2 x 2 3  . . .  X . _ l  (5.1) 

where the Gram determinant X,--]X~ a X22...X,, ]. The determinants are referred to by the 
elements in their leading diagonals. It follows immediately that if the number of prescribed 
functions in the approximating series (4.1) is increased by one, then the change in the value of 
the determinantal ratio is given by (5.1). When the number of functions in (4.1) changes from 
m to n then by repeated application of formulae similar to (5.1) it is possible to obtain a result 
for U , -  Um. 

The quadratic form aXa r is positive definite, and the condition for this to be so is that the 
Gram determinants Xr, ( r = l ,  2 . . . . .  n), are positive, hence the right-hand side of (5.1) is 
always negative, and thus an increase in the number of approximating functions in (4.1) will 
decrease the value of the upper bound, thus improving its value. 

A repeated application of (5.1) and a summation produces the finite series expansion 

U, = I - X~ - r=2 Xr_~X~ (5.2) 

It is thus possible to find an exact formula for the least upper bound, for a given n. 
The corresponding result for L, derived from (4.13) is 

L. = K + ' (5.3) 

and since in (4.10) the quadratic form bWb T is positive definite then W r >0, (r= 1, 2 . . . . .  n). 
Again it is noted that the series has a finite number of terms and K > 0. Hence in general an 
increase in n produces an increase in L,, and thus produces an improved value of the lower 
bound. Results related to (5.2) and (5.3) for a different problem are quoted by Levine and 
Schwinger [12] without proof. 

Example 1. An upper bound for a homogeneous anisotropic elastic prism. 
The approximating function Z is given by (4.1) with n=5,  and 

1 2 1 2 
g a  = X l  , g2 = x 2  , g 3  = x 1  x 2  , g 4  = 2 x 2  , g 5  = 2 x 1  �9 

The corresponding functions Xrs, Y~, (r = 1, 2 . . . . .  5), from (4.7) and (4.8) are readily deter- 
mined in terms of the integrals 
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Is rs  Its = XlX2 dS , 

it being remembered that for homogeneous material ~xij, (i, j =  1, 2), are constants. Row or 
column reduction of the determinants in (4.6) leads ultimately to the result 

4(~11 ~22 - cd2) (102 i20 - i21)  
u . . . .  , (5.4) 

oql lo2-}-o:2212o-- 2o:12111 
where 

P 

L = [o 

Here Xl, x2 are the coordinates of the centre of area of the cross-section S, i02 and i2o are the 
second moments of S about lines through the centre of area parallel to the x~ and x2 axes 
respectively, and i 11 is the corresponding product moment. 

The expression for U has the property that it is invariant under a rotation of the axial system. 
It is also noticed that it is an extension of the result given by Flavin [7, p. 702] for the ortho- 
tropic cylinder. 

Example 2. An upper bound for a non-homogeneous anisotropic elastic prism. 
It is known that a rough upper bound U for the torsional rigidity T is I, as shown in (1.10), 

where I is defined in (1.6), and the elastic parameters aij are functions of position. An improve- 
ment of the bound may be obtained by taking n = 2  in (4.1) with gl =x l ,  g2 =x2. In this case 
(5.2) becomes 

U = I - X22 Y Z + x 1 1 Y Z - 2 x 1 2  Ya I12 
X 1 1 X 2 2 _ X 2 2  , ( 5 . 5 )  

where 
P 

X~ = Io Gf lS  , ( r , s = l ,  2), 
d o  

and 

Y~ = Ys (~rl X z - G 2 x l )  dS , (r = 1, 2). 

This result (5.5) obtained by the inclusion of linear terms in xl and x 2 in the approximating 
function is precisely the smallest value of I, as defined in (1.6), obtained by a change in position 
of the origin of coordinates. 

Example 3. An upper bound for a non-homogeneous anisotropic elastic prism of symmetrical 
section. 

Here ~;~ is a function of position, and the material non-homogeneity is such that it is sym- 
metrical about the xl axis, coincident with the axis of symmetry of the prism section, i.e. 
O~ij(Xl, X2)=O~ij(Xl, - - X 2 ) .  It is found convenient to introduce the integrals 

l~ j = (~ aij(xi, x2)x] x~2 dS,  

so that i j _  I , s - 0  when s is an odd integer. 
An approaching function )~ in this case is chosen involving the functions 

1 2 1 2 
g l  = X1  X2 , g 2  = 2 X 1  , g3 = ~X2 �9 

Use of (4.6) leads to the upper bound of the form 

U = 4AB/(A + B),  (5.6) 
where 

1112~2/i22 A = 1 0 1 1 - t . 0 2  j , - 0 2 ,  

= [I12~2/I11 B I22-- ~'201 / '20" 

It is noted that (5.6) has the same form as that given by Nicolai [13] for the isotropic prism. 
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Example 4. Bounds for the homogeneous anisotropic N-fold symmetric elastic prism. 
It is known that the functions gr(Xl, X2) of (4.1) are continuous in S. The prism with N-fold 

symmetry has N identical sections, and thus we choose the gr(Xl, x2) to be identical in each 
section and continuous across the internal boundaries separating each section. In this context 
each section can be considered as a typical section So rotated through an integral multiple of 
2reiN, and the upper bound formula (4.6) reduces to 

A B //2[A[ 
U : N(0{11+0{22 ) B T  J (5.7) 

where A and B are matrices with elements 

Ars= (s (gr'lgs'a +gr'zgs'2)dS~ 
. 0 

o 
respectively, and 

J ; [ (x~+x~)dS o. 
js o 

The lower bound is determined from (4.13) assuming that 0 can be developed as in (4.9) in 
each of the N parts of S, and h~(x~, x2) must be continuous across internal boundaries to each 
section of S. This bound reduces to 

where C and D are matrices with elements 

C,s= f (h~,lhs, l +hr,zhs, z)dSo, 
,J So 

Dr =j"  (Xlhr, l + Xzhr, 2)dSo, 
So 

respectively. 
If U, and L I are the bounds for the corresponding isotropic prism of rigidity modulus #, then 

U - (0{11-~- 0{22) UI L = 2(0{11c~22-0{22)LI (5.9) 
2# ' # (0{ 11-1- 0{22) 

A knowledge of the bounds on the torsional rigidity for the isotropic prism thus leads to values 
of the bounds for an anisotropic prism. 

Further, if the exact value T~ of the torsional rigidity for the isotropic prism is known, then 
bounds for the anisotropic prism can be found using U and L as in (5.9), with UI and L x replaced 
by T I. This is a generalization of a result due to Flavin [7, pp. 700, 701]. The coefficients of Ut 
and L~ in {5.9) are scalars, and thus the bounds are independent of the orientation of the axes. 

The regular hexagon section. For a prism of isotropic material of rigidity modulus/~, with 
a cross-section in the form of a regular hexagon of side a the torsional rigidity T x has the 
(rounded-off) value 1.035459 #a 4. This result has been obtained by the application of a formula 
due to Seth [14]. It differs from the value given by Polya and Szego 1-15, p. 258], although it 
is consistent with results derived in Section 6 of this paper. If we write P = 0{1,/0{22, Q = 0{12/0{22, 
L'=L/0{22a 4, U'= U/0{22 a4, then application of (5.9) with U1 and L1 replaced by T~ leads to 
the results as given in Table 1. 

The upper bound suffers from the defect that it does not reflect any change in 0{12. It should 
also be noted that these bounds can only lead to rough estimates of the values of the torsional 
rigidities, since the bounds differ by about 12 ~ ,  3 ~o and 7 ~o respectively from their mean 
values. 
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TABLE 1 
Regular hexagon section 

P Q E U' 

0.50 0.25 0.604018 0.776594 
1.00 0.25 0.970743 1.035459 
2.00 0.25 1.337468 1.553188 

6. Numerical results 

The prism is assumed to be elastically homogeneous and anisotropic, so that a/j, (i, j = 1, 2), 
are constants. The method applies equally to non-homogeneous prisms. It is assumed that the 
function ;( of(4. i) is developed as a sum of polynomials of degrees ranging from zero to a selected 
integral value n, with arbitrary constant coefficients a,.. It is thus possible to write 

~ ,,~p-q.~q (6.1) 
p=O q=O 

where r=�89 and 'for a given integer n the total number of terms in Z is 
m=a(n+l)(n+2). 

In the case of ~b, given by (4.9), it is necessary to write 

0 = f ( x l ,  x2) E ~'~x ~" ~P-q~q~2, (6.2) 
p=O q=O 

where f(xl, x2) is a polynomial which is zero on C the contour of the prism cross-section. 
The matrix elements Xrs, Y~ of (4.7), (4.8) respectively involve integrals of the type 

f x~xfl2dxldx2, 

where ~, fl are integers. These integrals may be evaluated directly for an area S With contour C, 
or by an iterative method. Due note should be made of any geometrical symmetries in the cross- 
section, so that some of the integrals may be zero in value, and thus some of the matrix elements 
may have zero values, or equivalently some of the terms in Z or ~ may be omitted. 

If • contains m terms then the determinant in the numerator of U of (4.6) is of order m + 1, 
the leading minor of order m being identical with the determinant in the denominator of (4.6). 
In practice the positive definiteness of both determinants allows Gaussian elimination to 
proceed without pivoting, so that both determinants can be reduced to upper triangular form 
simultaneously. The ratio of the original determinants will then have a value equal to that of 
the (m+ 1)th element in the leading diagonal of the upper triangular determinant in the final 
form of the numerator. The error produced in this element due to the elimination process is 
given by Kabaza [16] as less than 2.01mae, where a is the value of the largest element in the 
original numerator determinant, and e is the least significant digit in the word of the binary 
digital computer in use (e= 10-16 in this computation). The computer program was arranged 
so as to obtain the values of the ratio of the determinants at intermediate values of the range 
(0, m) during the same elimination process. In order to counteract the effect of possible in- 
stability due to the choice of approximating function the numerical analysis was repeated using 
double-length arithmetic, and a further check of the accuracy was made by using the method 
of reliable bounds following Synge [17]. To the number of decimal places given in the following 
numerical results the values were the same. The method may be applied equally well to the 
evaluation of L from (4.13). 

Let P=~11/~22, Q=~12/~22, and U ' =  U/0~22 a4, L'=L/o~22 a4, where a is a standard length 
associate~a with the cross-section of the prism. 
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6.1. Kite section 

In Fig. 1 the line BD is orthogonal t o  AC, and AO = OC =a/2, B E = E D ,  M =  BD/AC, 
R = 20E/AC.  Table 2 gives the values for the bounds E and U' for varying values of P and M, 
with n=  10 in (6.1), (6.2) respectively, and Q=0.25, R=0.5.  

For isotropic material with P = 1, Q = 0 the results for the square section, i.e. M = 1, R--  0 are 

E = 0.0351 4415, U' = 0.0351 4487, 

the exact (rounded-off) value being 0.0351 4428. 
For  the rhombus section with M = 3  -~, R = 0  we have 

L' = 0.0104 3670, U' = 0.0104 3967. 

x 2 

A D C x I 

Figure 1. Kite section. 

TABLE 2 
Kite section 

P M E U'  

0.5 1.5 0.0035 8042 
0.5 1.0 0.0198 4654 
0.5 0.5 0.0469 0588 
2.0 1.5 0.0109 4203 
2.0 1.0 0.0441 5723 
2.0 0.5 0.0853 8937 

0.0035 8378 
0.0198 5016 
0.0469 2572 
0.01094369 
0.0441 8884 
0.0854 9254 

TABLE 3 

Isosceles triangle section 

P M E U' 

0.5 0.5 0.0030 2660 
0.5 1.0 0.0168 3210 
0.5 1.5 0.0409 5216 
2.0 0.5 0.0092 0390 
2.0 1.0 0.0392 3355 
2.0 1.5 0,0790 5765 

0.0030 2674 
0.0168 3218 
0.0409 5219 
0.0092 0392 
0.0392 3356 
0.0790 5821 
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TABLE 4 
Right-angled triangle section 

P M E U' 

0.5 0.5 0.0027 1111 0.0027 1167 
0.5 1.0 0.0139 7942 0.0139 8037 
2.0 0.5 0.0081 2412 0.0081 2431 
2.0 1.0 0.0324 9649 0.0324 9724 

TABLE 5 
Regular hexagon section 

P Q L' u' 

0.5 0.25 0.6067 9483 0.6069 3118 
2.0 0.25 1.3413 3400 1.3415 7706 

6.2. Isosceles triangle section 

For an isosceles triangle section ABC of base AB=Ma,  and height a, the bounds for n =  10, 
Q = 0.25 are recorded in Table 3 for varying P and M. 

For  an equilateral triangle section of a prism of isotropic material both bounds have the 
same value 0.0384 9002, the exact (rounded-oil) value, as is to be expected with a polynomial 
approximating function. 

6.3. Right-angled triangle section 

The triangle ABC has a right angle at B, and AB=a,  BC=Ma.  For Q=0.25 and n= 10 the 
bounds for the torsional rigidity are given by Table 4. 

For  a prism of isotropic material of 30~176 ~ triangle section, i.e. P = 1, Q = 0, M = 3-1, 
the bounds are 

L' = 0.0079 1405, U' = 0.0079 1411, 

and these may be compared with the exact (rounded-off) value 0.0079141 as given by Hay [18]. 

6.4. Regular hexagon section 

For a hexagonal section of side a the lower and upper bounds to the torsional rigidity are given 
in Table 5. Symmetry properties of the matrices X and Z in (4.6) and (4.13) respectively have 
allowed the values ofn = 16 to be taken for E and U' without use of excessive store space during 
the computation. 

The results for the case of isotropic material where P =  1, Q =0,  are 

L' = 1.0354 1891, U' = 1.0355 4020, 

and this should be compared with the exact (rounded-off) result obtained by the method of 
Seth [14], i.e. 1.035459, as referred to in Section 5. The bounds in Table 5 are an improvement 
on the corresponding results of Table 1. 
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